Abstract

An ultra-wideband (6-18 GHz) phased-array antenna with a beam scanning angle of ±28° is proposed. A step-by-step design procedure consisting of beamforming network (BFN), end-launcher feed adapter, and the radiating element is presented. Microstrip Rotman lens has been designed to act as the BFN, and optimized to achieve minimum phase-error over the whole frequency range. In order to satisfy the condition needed for avoiding grating lobes, as well as achieving a wide radiation bandwidth and a high power handling capability, an E-plane double-ridged horn antenna is used as the radiating element. A novel wideband end-launcher coaxial to double-ridged waveguide transition has also been developed for connecting the BFN to the antenna array. Extensive optimization procedures have been applied to the end-launched adapter together with the antenna to achieve the best return loss over the frequency band of operation. The whole system has been simulated using CST full-wave simulator. An excellent agreement between the measurements of the fabricated system and the simulated results is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.