Abstract
An ultra-wideband (UWB) rectenna (fractional bandwidth >100%) using a novel wideband complementary matching stub is proposed for microwave power transmission and energy harvesting. A simple resonant structure, i.e., LC series-parallel resonant circuit, is embedded to the L-shaped complementary matching stub. Due to the unique frequency response of the LC resonant circuit, the proposed matching stub can exhibit “open” and “short” circuits as a function of frequency, thereby acting as a complementary matching circuit covering a relatively wide frequency range. Having utilized the proposed matching stub, the nonlinear input impedance of the rectifier can be tuned to conjugately match the antenna impedance throughout the frequency band of interest. Simulated and measured results show that the proposed rectenna has good matching performance ( S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> <; -10 dB) and high RF-dc conversion efficiency (>50%) over a relatively wide frequency range from 0.9 to 3 GHz (for GSM, Wi-Fi, and WLAN bands). The maximum conversion efficiency of 73.4% is realized at 3-dBm input power. It is evident that the proposed resonant structure-based matching scheme is a promising and effective solution to facilitate the UWB rectenna design with stably high efficiency over a very wide frequency band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.