Abstract
This Letter explores the use of Ge-rich Si0.2Ge0.8 waveguides on graded Si1-xGex substrate for the demonstration of ultra-wideband photonic integrated circuits in the mid-infrared (mid-IR) wavelength range. We designed, fabricated, and characterized broadband Mach-Zehnder interferometers fully covering a range of 3μm in the mid-IR band. The fabricated devices operate indistinctly in quasi-TE and quasi-TM polarizations, and have an extinction ratio higher than 10dB over the entire operating wavelength range. The obtained results are in good correlation with theoretical predictions, while numerical simulations indicate that the device bandwidth can reach one octave with low additional losses. This Letter paves the way for further realization of mid-IR integrated spectrometers using low-index-contrast Si1-xGex waveguides with high germanium concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.