Abstract
In this paper, ultra-wideband (UWB) channel estimation based on the theory of compressive sensing (CS) is developed. The proposed approach relies on the fact that transmitting an ultra-short pulse through a multipath UWB channel leads to a received UWB signal that can be approximated by a linear combination of a few atoms from a pre-defined dictionary, yielding thus a sparse representation of the received UWB signal. The key in the proposed approach is in the design of a dictionary of parameterized waveforms (atoms) that closely matches the information-carrying pulseshape leading thus to higher energy compaction and sparse representation, and, therefore higher probability for CS reconstruction. Two approaches for UWB channel estimation are developed under a data-aided framework. In the first approach, the CS reconstruction capabilities are exploited to recover the composite pulse-multipath channel from a reduced set of random projections. This reconstructed signal is subsequently used as a referent template in a correlator-based detector. In the second approach, from a set of random projections of the received pilot signal, the Matching Pursuit algorithm is used to identify the strongest atoms in the projected signal that, in turn, are related to the strongest propagation paths that composite the multipath UWB channel. A Rake like receiver uses those atoms as templates for the bank of correlators in the detection stage. The bit error rate performances of the proposed approaches are analyzed and compared to that of traditional correlator-based detector. Extensive simulations show that for different propagation scenarios and UWB communication channels, detectors based on CS channel estimation outperform traditional correlator using just 1/3 of the sampling rate leading thus to a reduced use of analog-to-digital resources in the channel estimation stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.