Abstract

This paper investigates Ultra Wide Band (UWB) response of a self-actuated electromagnetic wave shield based on a diode grid both in frequency and time domain. The investigation is flrst carried out on a shield valid for an incident wave polarized at a speciflc direction only, then extended to a shield efiective for an incident wave polarized at an arbitrary direction. In the frequency domain, two linear analysis methods are used to study the properties of the diode grid over the frequency range from 0.01 to 10GHz. One method is the microwave network analysis. Another is simulating the diode grid by a linear equivalent circuit instead of a diode. In the time domain, the property of the shield is studied with respect to a broadband impulse, where the diode is described by its SPICE circuit model including the nonlinear property. The results show that the diode grid works well as a self-actuated electromagnetic power selective surface (PSS) in a certain frequency range. The diode grid is strongly frequency dependent. The operating frequency band relies on the reactive elements in the diode grid. In order to extend the operating frequency to a high band, smaller cell size and smaller junction capacitance should be employed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.