Abstract

An ultra wide-angle and broad-band magneto-electric dipole like metamaterial absorber (MEDMA) was proposed. The trapezoidal resistance films on the top layer and the upright resistance films in the middle are both equivalent to electric dipoles. The metal back plate together with the resistance films on the top layer are equivalent to magnetic dipoles. The radiation characteristics of magnetic dipole and electric dipole determine that the composite structure can achieve low back radiation effect and equal E-plane and H-plane patterns. According to reciprocity principle, the composite structure will also have a better absorption performance when it is used as an absorber. Simulation results show that the absorption of the MEDMA is more than 90% under TM polarized waves of 3.4–8.0 GHz as the incident angle changes from 0° to 80°. For TE polarized waves of 3.2–9.0 GHz, the absorption with the incident angles of 0°–50° is more than 80%. The absorption performance for each part of the MEDMA was analyzed by the surface current distributions, and the impedance matching characteristics was demonstrated by Smith chart. This work may provide a technical way in stealth research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call