Abstract

In this research, a highly sensitive electrochemical sensor was developed for the square wave anodic stripping voltammetric determination of Pb2+ at ultra-trace levels. A Glassy carbon electrode was modified with an in-situ electroplated bismuth film and the nanocomposite of a recently synthesized melamine based covalent organic framework (schiff base network1 (SNW1)) and Fe3O4 nanoparticles (Fe3O4@SNW1). The obtained results exhibit clearly that combination of Fe3O4@SNW1 and in-situ electroplated bismuth film enhances the sensitivity of the modified electrode towards Pb2+ remarkably. A Plackett-Burman design was implemented for screening experimental factors to specify the significant variables influencing the sensitivity of the electroanalytical method. Afterward, the effective factors were optimized using Box-Behnken design (BBD). Under optimized conditions, the proposed electrode showed a linear response towards Pb2+ in the concentration range of 0.003–0.3 μmol L−1 with the detection limit of 0.95 nmol L−1. The selectivity of the fabricated electrode towards different ionic species were checked out and no serious interference was observed. At the end, the application of the designed sensor in the determination of Pb2+ at 10 different edible specimens were investigated and the obtained recovery values were in the range of (95.56–106.64%) indicating the successful performance of the designed sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.