Abstract

In this paper, the design of an ultra-wideband polarizer based on a metasurface with high-performance is reported and demonstrated. The polarizer is composed of a dielectric substrate with double semicircular gap patches and a metal film. Multiple strong resonance points enable the design to convert the incident linearly polarized waves into cross-polarized waves in the 14.8–28.0 GHz range, with a fractional bandwidth of 61.7% and a corresponding polarization conversion rate (PCR) above 95%. Further simulated results show that the PCR remains above 87% in the 14.37–24.75 GHz range when the incident angle of the electromagnetic (EM) waves is between 0–30°, and the physical mechanism is explained by the surface current distribution. In addition, the gradient metasurface is designed according to the Pancharatnam–Berry phase principle to achieve anomalous reflection, and the 1-bit metasurface is coded to reduce the Radar Cross Section (RCS). The EM waves reach an anomalous reflection of −23° at 15 GHz normal incidence, and the RCS is reduced by 10 dB in the range of 15.3–28.0 GHz. These findings have potential application value in stealth and antenna design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call