Abstract

Wafer-scale ultra-thin WO3 nanofilms, Ga2O3 nanofilms and Ga2O3-WO3 heterostructures with thickness of approximately ˜8.0 nm were fabricated on the SiO2/Si substrates by atomic layer deposition (ALD) technique for their subsequent usage as sensing materials for the ethanol detection. Structure and morphology of the developed ultra-thin samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, etc. Sensing properties of the developed ultra-thin nanostructures were investigated at the different temperatures and ethanol concentrations. The results showed that Ga2O3-WO3 heterostructures based gas sensor exhibited about 4 and 10-fold improvement in the response to ethanol compared to that of WO3 and Ga2O3 nanofilms at 275 °C. Furthermore, the sensor based on Ga2O3-WO3 heterostructures exhibited shorter response/recover time and excellent selectivity towards ethanol. ALD fabrication method provides a great potential for improvement of the sensing capabilities of high-performance gas sensor based on Ga2O3-WO3 heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.