Abstract

The design of thin-film semiconductor absorbers is a long-sought-after goal of crucial importance for optoelectronic devices. We propose a new strategy that achieves multi-band optical absorption in an ultra-thin semiconductor-insulator-metal nanostructure. The whole thickness of the absorber is just 60 nm, which is less than λ/12. The ultra-thin semiconductor resonators are used as the photonic coupling elements. The plasmonic metal layer with the thickness about 15 nm simultaneously acts as the transmission cancel layer and the plasmon source for resonant coupling with the optical near-field energy. The combined semiconductor resonators and the thin metal film produce strong electromagnetic field coupling and confinement effects, which mainly contribute to the efficient light trapping for the multi-band strong light absorption. The semiconductors such as Si, GaAs, and Ge are confirmed with the capability to show high light absorption via this simple hybrid metal-semiconductor resonant system. These features pave new insight on ultra-thin semiconductor absorbers and hold potential applications for optoelectronics such as nonlinear optics, hot-electron excitation and extraction, and the related devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call