Abstract

In order to inhibit the oxidation of Si materials in aqueous solution, Si nanowire array was wrapped by ultra-thin g-C3N4 nanosheets via an electrophoresis process. Scanning electron microscopy and transmission electron microscopy images showed that g-C3N4 nanosheets were evenly distributed on the surface of Si nanowire array. X-ray diffraction patterns indicated that Si nanowire array/g-C3N4 nanosheets were composed of Si (400 crystal plane) and g-C3N4 (002 and 100 crystal planes). The cyclic voltammetry curves revealed that the corrosion of Si nanowire array was restrained under the protection of g-C3N4 nanosheets. Furthermore, the photocurrent density of Si nanowire array/g-C3N4 nanosheets increased by nearly 3 times compared to that of bare Si nanowire array due to the effective charge separation caused by the built-in electric field at the interface. This work will facilitate the applications of Si materials in aqueous solution, such as solar energy harvest and photocatalytic pollution control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.