Abstract

AbstractThe adoption of hydrogels in most applications is hampered by their high free water content, which limits their mechanical performance and environmental resilience. Herein, this issue is simultaneously addressed by modulating the state of water and the intermolecular interactions in polyacrylamide (PAM) hydrogels. Specifically, PAM hydrogels are toughened by sugaring‐out using a monosaccharide (glucose, G). Glucose is found to facilitate PAM hydrogen bonding and interchain interactions. Meanwhile, the high hygroscopicity of glucose converts some of the free water to bound state, endowing the hydrogels with remarkable resilience to extreme environmental conditions. The PAM‐G hydrogels are demonstrated as multimodal sensors for soft robotics. Moreover, PAM‐G alcogels produced by solvent exchanging with ethanol are shown as effective opto‐mechanical sensors. Notably, all these properties are obtained by the inclusion of glucose, a green additive showing no negative health and environmental effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.