Abstract

We report a simple method of enhancing the chemical stability of monothiol-modified oligonucleotide-gold and -silver nanoparticle conjugates by a thin silica reinforcement coating. Conventional conjugates prepared by chemisorption of monothiol-modified oligonucleotides onto nanoparticle surfaces undergo rapid aggregation in the presence of thiol-containing small molecules (e.g., dithiothreitol) due to ligand exchange reactions. When the conjugates are treated with (3-mercaptopropyl)trimethoxysilane, a thin silica layer is formed on the nanoparticle surface, thereby entrapping and reinforcing the thiol-gold/-silver linkage. These silica-modified oligonucleotide-gold and -silver nanoparticle conjugates become much more stable toward dithiothreitol as compared to the unmodified conjugates. Moreover, the silica layer significantly hinders the gold/silver core from oxidative dissolution by sodium cyanide. Importantly, the unique hybridization-induced color change property of the oligonucleotide-gold and -silver nanoparticle conjugates is preserved even under harsh condition (i.e., high concentrations of dithiothreitol). Taken together, these ultra-stable oligonucleotide-nanoparticle conjugates hold promise for new diagnostics and therapeutics. Open image in new window

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.