Abstract

In non-Hermitian systems, enhancing sensitivity under exceptional point (EP) conditions offers an ideal solution for reconciling the trade-off between sensitivity and size constraints in sensing applications. However, practical application is limited by undesired sensitivity to external fluctuations, noise, and errors in signal amplification synchronization. This paper presents a precisely controlled EP tracking and detection system (EPTDS) that achieves long-term rapid tracking and locking near the EP by constructing a second-order non-Hermitian optical sensing unit, employing an optical power adaptive control method, and utilizing a combinatorial demodulation-based dual-loop cascaded control (CDCC) technique to selectively suppress traditional noise at different frequencies. The system locking time is 10 ms, and in room temperature conditions, the output frequency error over 1 hour is reduced by more than 30 times compared to before locking. To assess its sensing capabilities, the EPTDS undergoes testing in a rotational experiment based on the Sagnac effect, with the output bias instability based on Allan deviation measured at 0.036 °/h. This is the best result for EP-enhanced angular rate sensing that we are aware of that has been reported. The EPTDS method can be extended to various sensing fields, providing a new path for transitioning non-Hermitian sensing from the laboratory to practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call