Abstract
Single-crystal silicon carbide has excellent electrical, mechanical, and chemical properties. However, due to its high hardness material properties, achieving high-precision manufacturing of single-crystal silicon carbide with an ultra-smooth surface is difficult. In this work, quantum dots were introduced as a sacrificial layer in polishing for pulsed-ion-beam sputtering of single-crystal SiC. The surface of single-crystal silicon carbide with a quantum-dot sacrificial layer was sputtered using a pulsed-ion beam and compared with the surface of single-crystal silicon carbide sputtered directly. The surface roughness evolution of single-crystal silicon carbide etched using a pulsed ion beam was studied, and the mechanism of sacrificial layer sputtering was analyzed theoretically. The results show that direct sputtering of single-crystal silicon carbide will deteriorate the surface quality. On the contrary, the surface roughness of single-crystal silicon carbide with a quantum-dot sacrificial layer added using pulsed-ion-beam sputtering was effectively suppressed, the surface shape accuracy of the Ø120 mm sample was converged to 7.63 nm RMS, and the roughness was reduced to 0.21 nm RMS. Therefore, the single-crystal silicon carbide with the quantum-dot sacrificial layer added via pulsed-ion-beam sputtering can effectively reduce the micro-morphology roughness phenomenon caused by ion-beam sputtering, and it is expected to realize the manufacture of a high-precision ultra-smooth surface of single-crystal silicon carbide.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.