Abstract

Recently, molybdenum sulfide with its amorphous counterpart was found to hold a high activity versus the hydrogen evolution reaction (HER), making it a high potential material to explore new HER catalysts. Here we present a facile chemical method to synthesize ultra-small freestanding amorphous molybdenum sulfide (a-MoSx) colloidal nanodots with diameter of lower than 2 nm. Electrocatalytic HER tests show that freestanding a-MoSx colloidal nanodots exhibit an enhanced catalytic hydrogen activity in stark in contrast with in-situ annealed c-MoS2. When applied as a co-catalyst in photocatalytic HER, ultra-small a-MoSx nanodots could form a compact interface with the TiO2 when assisted by a bifunctional molecular linker, as the mercaptopropionic acid (MPA), which facilitates the decrease of the interfacial Schottky barrier occurring between the two components and allows for a fast injection of photo-excited electrons from the photoharvester into the co-catalyst. Our results demonstrate that the drastic enhancement of the photocatalytic H2 promotion rate of a-MoSx@MPA-TiO2 is mainly provided by unsaturated Mo(IV) active sites generated by the in-situ reduction during the photocatalytic HER process. The synergistic effect of generated unsaturated Mo(IV) sites and the presence of more exposed intrinsic active edges further promotes the enhancement of the catalytic H2 activity on a-MoSx nanodots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.