Abstract

Spin wave has attracted significant attention in various fields because of its rich physics and potential applications in the development of spintronics devices in the post-Moore era. However, the analog of a subluminal-like propagation in the field of spin waves has not been well discussed. Here, we theoretically demonstrate the ultra-slow spin waves propagation in a nanoscale two-dimensional ferromagnetic film in the presence of magnon-skyrmion interaction. The minimum spin waves propagation velocity was estimated to be as low as 1.8 m s−1 by adjusting the system parameters properly, and the spin waves group delay and advance are dynamically tunable via the intensity or detuning of the control field, which allows the possibility of observing superluminal- and subluminal-like spin waves propagation in a single experimental setup. These results deepen our understanding of the spin wave–skyrmion interactions, open a novel and efficient pathway to realize ultra-slow spin waves propagation, and are expected to be applied to magnetic information storage and quantum operations of magnons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.