Abstract
Photovoltaic (PV) power generation is highly stochastic and intermittent, which poses a challenge to the planning and operation of existing power systems. To enhance the accuracy of PV power prediction and ensure the safe operation of the power system, a novel approach based on seasonal division and a periodic attention mechanism (PAM) for PV power prediction is proposed. First, the dataset is divided into three components of trend, period, and residual under fuzzy c-means clustering (FCM) and the seasonal decomposition (SD) method according to four seasons. Three independent bidirectional long short-term memory (BiLTSM) networks are constructed for these subsequences. Then, the network is optimized using the improved Newton–Raphson genetic algorithm (NRGA), and the innovative PAM is added to focus on the periodic characteristics of the data. Finally, the results of each component are summarized to obtain the final prediction results. A case study of the Australian DKASC Alice Spring PV power plant dataset demonstrates the performance of the proposed approach. Compared with other paper models, the MAE, RMSE, and MAPE performance evaluation indexes show that the proposed approach has excellent performance in predicting output power accuracy and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.