Abstract
A coupled theoretical model based on Fokker–Planck equation for ultra-short laser ablation of dielectrics is proposed. Multiphoton ionization and avalanche ionization are considered as the sources during the generation of free electrons. The impact of the electron distribution in thermodynamic nonequilibrium on relaxation time is taken into account. The calculation formula of ablation depth is deduced based on the law of energy conservation. Numerical calculations are performed for the femtosecond laser ablation of fused silica at 526 and 1053 nm. It shows that the threshold damage fluences and ablation depths resulted from the coupled model are in good agreement with the experimental results; while the damage thresholds resulted from the approximate model significantly differ from the experimental results for lasers of long pulse width. It is concluded that the coupled model can better describe the micro-process of ultra-short laser ablation of dielectrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.