Abstract

Ultra-sensitive detection based on surface plasmon resonance (SPR) was investigated using 3D nanogap arrays for colocalization of target molecular distribution and localized plasmon wave in the near-field. Colocalization was performed by oblique deposition of a dielectric mask layer to create nanogap at the side of circular and triangular nanoaperture, where fields localized by surface plasmon localization coincide with the spatial distribution of target molecular interactions. The feasibility of ultra-sensitivity was experimentally verified by measuring DNA hybridization. Triangular nanopattern provided an optimum to achieve highly amplified angular shifts and led to enhanced detection sensitivity on the order of 1fg/mm2 in terms of molecular binding capacity. We confirmed improvement of SPR sensitivity by three orders of magnitude, compared with conventional SPR sensors, using 3D plasmonic nanogap arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.