Abstract

The hydroxyl (OH) radical is arguably the most important transient radical in high-temperature gas-phase combustion reactions, yet it is very difficult to measure because of its high reactivity and, thus, short lifetime and low concentration. This work reports the development of a novel method for ultra-sensitive, quantitative, and microsecond-resolved detection of OH based on UV frequency-modulation spectroscopy (FMS). To the best of the authors' knowledge, this is the first FMS demonstration in the near-UV spectral region for detection of short-lived radical species. Shot-noise-limited detection was achieved at an optical power of 25mW. A proof-of-concept experiment in a tabletop H2O/He microwave discharge cell has reached a 1σ minimum detectable absorbance (MDA) of less than 2×10-4 over 1MHz measurement bandwidth. High-temperature OH measurement was demonstrated in a 15cm diameter shock tube, where a typical MDA of 3.0×10-4 was achieved at 1330K, 0.38atm, and 1MHz. These preliminary results have outperformed the previous best MDA by more than a factor of 3; further improvement by another order of magnitude is anticipated, following the strategies outlined at the end of this Letter. The current method paves the path to parts per billion (ppb) -level OH detection capability and offers prospects to significantly advance fundamental combustion research by enabling direct observation of OH formation and scavenging kinetics during key stages of fuel oxidation that were inaccessible with previous methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call