Abstract

We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3He or 129Xe samples with a SQUID as magnetic flux detector. The device will be employed to control fluctuating magnetic fields and gradients in a new experiment searching for a permanent electric dipole moment of the neutron. Furthermore, with the detection of the free precession of co-located 3He/129Xe nuclear spins it can be used as ultra-sensitive probe for non-magnetic spin interactions, since the magnetic dipole interaction (Zeeman-term) drops out. Characteristic spin precession times T2 * of up to 60 h were measured. The achieved signal-to-noise ratio of more than 5000:1 leads to an expected sensitivity level (Cramer-Rao lower bound) of δB≈1 fT after an integration time of 220 s and of δB≈10-4 fT after one day. By means of a co-located 3He/129Xe magnetometer, noise sources inherent in the magnetometer could be investigated, showing that CRLB is fulfilled, at least down to δB≈10-2 fT. The reason for such a high sensitivity is that free precessing 3He (129Xe) nuclear spins are almost completely decoupled from the environment. Therefore, this type of magnetometer is particularly attractive for precision field measurements where long-term stability is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.