Abstract

A compact and ultra-sensitive magnetic field sensor has been proposed by exploiting a microfiber-assisted Mach-Zehnder interferometer functionalized by magnetic fluids. We have experimentally investigated the transmission spectral responses of the proposed sensor to the variation of applied magnetic field intensity and environmental temperature. The interference dips exhibit a magnetic field sensitivity as large as −1.193 nm/Oe for a low magnetic field intensity range of 3 Oe to 21 Oe. By using the sensing matrix containing the magnetic field as well as temperature sensitivities for different interference dips, the temperature cross-sensitivity issue could be effectively resolved. Our proposed sensor is anticipated to find potential applications in weak magnetic field detection, and moreover, the immunity to temperature cross-sensitivity effect ensures its applicability in temperature-fluctuated environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.