Abstract

Developing strain sensors with both high sensitivity and high linearity has always been the goal of researchers. Compared to resistive strain sensors, capacitive strain sensors have incomparable linearity advantages, but have always been limited by low sensitivity. Here, we report a gradient stiffness sliding design strategy that addresses this problem, significantly improving sensitivity while maintaining high linearity. By controlling the distribution of the locally enhanced electric field and the heterogeneous deformation of the substrate, a strain sensor with excellent performance is successfully prepared, exhibiting a giant gauge factor (9.1 × 106) and linearity (R2 = 0.9997) over the entire sensing range, together with almost no hysteresis and fast response time (17 ms). The gradient stiffness sliding design is a general strategy expected to be applied to other types of sensors to achieve ultra-high sensitivity and ultra-high linearity at the same time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.