Abstract

This article reports breast cancer cell lines (Hs578T, MDA-MB-231, MCF-7, and T47D) and healthy breast cells (MCF-10A) detection based on the modulation of its electrical properties by deploying dual nanocavity engraved junctionless FET. The device has a dual gate to enhance gate control and has two nanocavities etched under both gates for breast cancer cell lines immobilization. As the cancer cells are immobilized in the engraved nanocavities, which were earlier filled with air, the dielectric constant of the nanocavities changes. This results in the modulation of the device's electrical parameters. This electrical parameters modulation is then calibrated to detect the breast cancer cell lines. The reported device demonstrates a higher sensitivity toward the detection of breast cancer cells. The JLFET device optimization is done for improving the performance by optimizing the nanocavity thickness and the SiO2 oxide length. The variation in the dielectric property of cell lines plays a key role in the detection technique of the reported biosensor. The sensitivity of the JLFET biosensor is analyzed in terms of ∆VTH, ∆ION, ∆gm , and ∆SS . The reported biosensor shows the maximum sensitivity for T47D ( κ = 32 ) breast cancer cell line with ∆VTH = 0.800 V, ∆ION = 0.165 mA/μm, ∆gm = 0.296 mA/V-μm , and ∆SS = 5.41 mV/decade. Moreover, the effect of variation in the occupancy of the cavity by the immobilized cell lines has also been studied and analyzed. With increased cavity occupancy the variation in the device performance parameter enhances Further, the sensitivity of the proposed biosensor is compared with the existing biosensors and it is reported to be highly sensitive as compared to the existing biosensors. Hence, the device can be utilized for array based screening of cell lines of breast cancer and diagnosis with the benefit of easier fabrication and cost effectiveness of the device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call