Abstract

Metal ion separations are critical to numerous fields, including nuclear medicine, waste recycling, space exploration, and fundamental research. Nonetheless, operational conditions and performance are limited, imposing compromises between recovery, purity, and cost. Siderophore-inspired ligands show unprecedented charge-based selectivity and compatibility with harsh industry conditions, affording excellent separation efficiency, robustness and process control. Here, we successfully demonstrate a general separation strategy on three distinct systems, for Ac, Pu, and Bk purification. Separation factors (SF) obtained with model compound 3,4,3-LI(1,2-HOPO) are orders of magnitude higher than with any other ligand currently employed: 106 between Ac and relevant metal impurities, and over 108 for redox-free Pu purification against uranyl ions and trivalent actinides or fission products. Finally, a one-step separation method (SF > 3 × 106 and radiopurity > 99.999%) enables the isolation of Bk from adjacent actinides and fission products. The proposed approach offers a paradigm change for the production of strategic elements.

Highlights

  • Metal ion separations are critical to numerous fields, including nuclear medicine, waste recycling, space exploration, and fundamental research

  • Numerous drug development studies[14,15,16] have focused on synthetic siderophore-inspired compounds because of their ability to form stable, and sometimes luminescent, complexes with metal ions of interest for medical imaging, radionuclide decontamination, and cancer treatments. While this class of ligands, encompassing HOPO and catecholamide (CAM) derivatives, has been known for decades, it had never been studied in details for separation applications

  • The chemistry of some HOPO ligands was recently extended across the periodic table, highlighting their outstanding selectivity, and large superiority over polyaminocarboxylate chelators (IDA, EDTA, DTPA, etc.), typically encountered in separations (Fig. 1)

Read more

Summary

Introduction

Metal ion separations are critical to numerous fields, including nuclear medicine, waste recycling, space exploration, and fundamental research. A class of hydroxypyridinone (HOPO) chelators was investigated for its high metal-binding selectivity and applicability to separation needs. The selectivity of 343HOPO for tetravalent ions is so high that it is expected to form complexes even under very acidic conditions (experimentally observed[24] in 3 M HCl for Sn4+), whereas it should release trivalent[25] and divalent[24,26] ions completely below pH~2 (Fig. 1).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.