Abstract

Enabling surfaces with passive anti-icing properties is an emerging, facile, economical, and energy-saving strategy to mitigate the harm caused by ice accretion. However, the combination of icephobicity and robustness remains a daunting challenge. Herein, we present an ultra-robust transparent icephobic coating with high toughness, strong substrate adhesion, and self-healing capability. Hydrophobicity, smoothness, and softness of the coating guarantee low ice adhesion strength. By incorporating a spongy structure, the ice adhesion strength of the coating is lowered further down to 26.7 ± 1.1 kPa. Importantly, the coating exhibits high toughness, strong adhesion to the substrate, and self-healing capability due to the presence of multiple hydrogen bonding. Consequently, the coating maintains its icephobicity after 35 icing/deicing cycles and 600 abrasion cycles, is resilient to delamination, and is able to heal and recover its icephobicity from the mechanical damage introduced by both cuts and abrasions. Moreover, the coating sustains its icephobicity after eight months of immersion in saltwater, as well as exposure to the near-arctic weather in Trondheim (Norway). This work presents new insights into the design of robust icephobic coatings that can sustain severe mechanical loading for use in real complex environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call