Abstract

Ultra-reliability and low latency are two key components in 5G networks. In this letter, we investigate the problem of ultra-reliable and low-latency communication in millimeter wave-enabled massive multiple-input multiple-output networks. The problem is cast as a network utility maximization subject to probabilistic latency and reliability constraints. To solve this problem, we resort to the Lyapunov technique, whereby a utility-delay control approach is proposed, which adapts to channel variations and queue dynamics. Numerical results demonstrate that our proposed approach ensures reliable communication with a guaranteed probability of 99.99%, and reduces latency by 28.41% and 77.11% as compared to baselines with and without probabilistic latency constraints, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.