Abstract

In recent years, additive manufacturing (AM) of ceramics has significantly advanced in terms of the range of equipment available, printing resolution and productivity. Most techniques involve the use of ceramic powders embedded in an organic binder which is typically removed through a slow thermal debinding process.Herein, we prove for the first time that ultra-rapid debinding and sintering are possible for complex 3YSZ components produced using material extrusion technology. The printed components were first chemically debinded in acetone thus removing about one-half of the binder, and then thermally debinded and densified by ultrafast high-temperature sintering (UHS) in a single-step process (30–120 s). Fully dense components were obtained with tailored microstructure and nanometric grain size. The sintered artefacts were crack-free even at the microscopic level.This approach paves the way for rapid processing (debinding and sintering) of additively manufactured ceramics with reduced energy consumption and carbon footprint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.