Abstract

The demand for low-noise, continuous-wave, frequency-tunable lasers based on semiconductor integrated photonics has advanced in support of numerous applications. In particular, an important goal is to achieve a narrow spectral linewidth, commensurate with bulk-optic or fiber-optic laser platforms. Here we report on laser-frequency-stabilization experiments with a heterogeneously integrated III/V-Si widely tunable laser and a high-finesse, thermal-noise-limited photonic resonator. This hybrid architecture offers a chip-scale optical-frequency reference with an integrated linewidth of 60 Hz and a fractional frequency stability of 2.5×10-13 at 1 s integration time. We explore the potential for stabilization with respect to a resonator with lower thermal noise by characterizing laser-noise contributions such as residual amplitude modulation and photodetection noise. Widely tunable, compact and integrated, cost-effective, stable, and narrow-linewidth lasers are envisioned for use in various fields, including communication, spectroscopy, and metrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.