Abstract
Bacterial infections can pose significant health risks as they have the potential to cause a range of illnesses. These infections can spread rapidly and lead to complications if not promptly diagnosed and treated. Therefore, it is of great significance to develop a probe to selectively target and image pathogenic bacteria while simultaneously killing them, as there are currently no effective clinical solutions available. This study presents a novel approach using near-infrared carbonized polymer dots (NIR-CPDs) for simultaneous in vivo imaging and treatment of bacterial infections. The core-shell structure of the NIR-CPDs facilitates their incorporation into bacterial cell membranes, leading to an increase in fluorescence brightness and photostability. Significantly, the NIR-CPDs exhibit selective bacterial-targeting properties, specifically identifying Staphylococcus aureus (S.aureus)while sparing Escherichia coli (E. coli). Moreover, under 808nm laser irradiation, the NIR-CPDs exhibit potent photodynamic effects by generating reactive oxygen species that target and damage bacterial membranes. In vivo experiments on infected mouse models demonstrate not only precise imaging capabilities but also significant therapeutic efficacy, with marked improvements in wound healing. The study provides the dual-functional potential of NIR-CPDs as a highly effective tool for the advancement of medical diagnostics and therapeutics in the fight against bacterial infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.