Abstract
Recently, with advances in acoustic metamaterial science, the possibility of sound attenuation using subwavelength structures, while maintaining permeability to air, has been demonstrated. However, the ongoing challenge addressed herein is the fact that among such air-permeable structures to date, the open area represents only small fraction of the overall area of the material. In the presented paper in order to address this challenge, we first demonstrate that a transversely placed bilayer medium with large degrees of contrast in the layers' acoustic properties exhibits an asymmetric transmission, similar to the Fano-like interference phenomenon. Next, we utilize this design methodology and propose a deep-subwavelength acoustic metasurface unit cell comprising nearly 60% open area for air passage, while serving as a high-performance selective sound silencer. Finally, the proposed unit-cell performance is validated experimentally, demonstrating a reduction in the transmitted acoustic energy of up to 94%. This ultra-open metamaterial design, leveraging a Fano-like interference, enables high-performance sound silencing in a design featuring a large degree of open area, which may find utility in applications in which highly efficient, air-permeable sound silencers are required, such as smart sound barriers, fan or engine noise reduction, among others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.