Abstract

Terahertz (THz) chirality pursues customizable manipulation from narrowband to broadband. While conventional THz chirality is restricted by non-negligible linewidth and unable to handle narrowband well. Recently, the concept “quasi bound states in continuum” (quasi-BIC) is introduced to optics resonance system whose the quality factor can be extremely high with the ultra-low radiative loss, thus providing a conceptual feasibility for wave control with ultra-narrow linewidth. Herein, we construct quasi-BIC in a planar all-silicon THz metasurface with in-plane C2 and mirror symmetries breaking. Such system not only exposes the symmetry-protected BIC, but also exposes the parameter-tuned BIC assigned to single resonance type. An extremely narrow linewidth with high quality factor is obtained at quasi-BIC frequency, which achieves the ultra-narrowband THz chirality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.