Abstract
We propose a novel approach to obtain the ultra-narrowband, electrically switchable, and high-efficiency absorption in the monolayer graphene. The monolayer graphene is sandwiched between the silica substrate and a square array of silver nanospheres, which is covered by a very thick silica layer. The fundamental role of the thick silica cover layer is to homogenize the surrounding medium of the silver nanospheres, and thus efficiently exciting the lattice plasmon resonance. The lattice plasmon resonance arising from the coupling between the dipolar plasmon resonance of silver nanospheres and the zero-order diffraction wave at Wood anomaly can enhance the electromagnetic fields at the graphene surface, and thus greatly improve the near-infrared light absorption of the monolayer graphene with the maximum absorption efficiency up to 45%. Owing to the low radiation loss of the lattice plasmon resonance, the absorption linewidth of the monolayer graphene can be largely compressed to only several nanometers (3.2 nm ∼ 7.4 nm). Moreover, the absorption of the monolayer graphene in our proposed nanostructures has a nearly 100% modulation depth to exhibit an excellent switching property. Our work will be helpful for some graphene-based photoelectric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.