Abstract
Wideband spectrum sensing is a significant challenge in cognitive radios (CRs) due to requiring very high-speed analog- to-digital converters (ADCs), operating at or above the Nyquist rate. Here, we propose a very low-complexity zero-block detection scheme that can detect a large fraction of spectrum holes from the sub-Nyquist samples, even when the undersampling ratio is very small. The scheme is based on a block sparse sensing matrix, which is implemented through the design of a novel analog-to- information converter (AIC). The proposed scheme identifies some measurements as being zero and then verifies the sub-channels associated with them as being vacant. Analytical and simulation results are presented that demonstrate the effectiveness of the proposed method in reliable detection of spectrum holes with complexity much lower than existing schemes. This work also introduces a new paradigm in compressed sensing where one is interested in reliable detection of (some of the) zero blocks rather than the recovery of the whole block sparse signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.