Abstract

Noble metal doping can achieve an increase in mass activity (MA) without sacrificing catalysis efficiency and stability, so that alkaline hydrogen evolution reaction (HER) performance of the catalyst can be optimized to the maximum degree. However, its excessively large ionic radius makes it difficult to achieve either interstitial doping or substitutional doping under mild conditions. Herein, a hierarchical nanostructured electrocatalyst with enriched amorphous/crystalline interfaces for high-efficiency alkaline HER is reported, which is composed of amorphous/crystalline (Co, Ni)11 (HPO3 )8 (OH)6 homogeneous hierarchical structure with an ultra-low doped Pt (Pt-a/c-NiHPi). Benefiting from the structural flexibility of the amorphous component, extremely low Pt (0.21wt.%, totally 3.31µg Pt on 1 cm-2 NF) are stably doped on it via a simple two-phase hydrothermal method. The DFT calculations show that due to the strongly electron transfer between the crystalline/amorphous components at the interfaces, electrons finally concentrate toward Pt and Ni in the amorphous components, thus the electrocatalyst has near-optimal energy barriers and adsorption energy for H2 O* and H* . With the above benefits, the obtained catalyst exhibits an exceptionally high MA (39.1mA µg-1 Pt ) at 70mV, which is almost the highest level among the reported Pt-based electrocatalysts for alkaline HER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call