Abstract

This paper presents an ultra-low-power, bulk-driven, source-degenerated fully differential transconductor (FD-OTA), operating in subthreshold region. The source-degeneration (SD) and bulk-drive ensure linearity and rail-to-rail input swing. The flipped voltage follower and SD resistor perform V–I conversion in input core with power efficient class AB mode of operation. The reduction in open loop gain and gain bandwidth (GBW) of bulk-drive is compensated by applying partial positive feedback at diode connected MOSFET pair. The current gain from input core to output load side is set (1:1) in OTA1 and (1:4) in OTA2. The OTA2 offers increased transconductance and GBW whereas self-cascode load increases the output impedance and overall gain of the FD-OTAs. Both the input core and common source self-cascode load operate in class AB mode so these FD-OTAs provide enhanced slew rates. These OTAs have been employed to implement Biquadratic low-frequency Gm-C filter suitable for bio-signal applications. The proposed OTA2 has used dual supply voltage of ± 0.3 V and dissipates around 70 nW power and provides 62 dB FD-open loop gain with GBW of 7.73 kHz while driving the FD-load of 2 × 15 pF. The Cadence VIRTUOSO environment using UMC 0.18 µm CMOS process technology has been used to simulate the proposed circuit. The Simulation results verified fully differential total harmonic distortion of − 72 dB, for 1.2 Vp–p signal at 200 Hz frequency in unity gain configuration with resistive degeneration of 1 MΩ for OTA1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.