Abstract

A novel optical injection locking amplifier with acousto-optic modulator based phase modulation and a coherent detection scheme for optical frequency transfer applications is experimentally demonstrated in this study. A commercial distributed feedback diode laser is injection-locked to the resonant frequency of the optical signal with an optical fiber path length of hundreds of kilometers. This provides approximately 59 dB gain and ensures that the input carrier frequency fractional stability can be as good as 10−20 at 1000 s. The amplifier was tested for the transfer of a commercial narrow-linewidth laser in a 180 km fiber link to a remote site with only a single amplification step. The transferred frequency at the remote end reached 10−20 at 20000 s, which is suitable for optical frequency distribution and remote comparison between optical atomic clocks.

Highlights

  • Immense progress in the development of frequency standards has facilitated high performance in various research fields

  • The bidirectional nature of the frequency transfer system (Doppler phase noise cancellation technology) limits the gain of the system and deteriorates the stability of transmission; this is because the point reflections and Rayleigh scattering in the fiber link may send feedback into the erbium-doped fiber amplifier (EDFA), which may trigger the stimulated effect[20,21]

  • Light passes through a PM three-port cyclic optical circulator and is injected into a commercial distributed feedback (DFB) diode laser (“slave” laser with optical frequency ωs), which is shown in the black box (c)

Read more

Summary

Introduction

Immense progress in the development of frequency standards has facilitated high performance in various research fields. Proposed an optical injection phase-locked loop (OIPLL) scheme that can provide a high net gain of approximately 44 dB with narrow gain bandwidth when an optical signal is transmitted through a 146 km fiber link. They obtained the phase noise of the optical injection locking system based on intensity modulation and direct detection, and they realized the locking effect by driving the pump current in the slave laser using an electronic feedback loop with a 750 Hz feedback bandwidth. We built an optical injection locking amplifier (OILA) with approximately 59 dB gain and frequency stability as good as 10−20 at 1000 s

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.