Abstract

A ultralow noise magnetic field is essential for many branches of scientific research. Examples include experiments conducted on ultracold atoms, quantum simulations, and precision measurements. In ultracold atom experiments specifically, a bias magnetic field will often serve as a quantization axis and be applied for Zeeman splitting. As atomic states are usually sensitive to magnetic fields, a magnetic field characterized by ultralow noise as well as high stability is typically required for experimentation. For this study, a bias magnetic field is successfully stabilized at 14.5 G, with the root mean square value of the noise reduced to 18.5 μG (1.28 ppm) by placing μ-metal magnetic shields together with a dynamical feedback circuit. Long-time instability is also regulated consistently below 7 μG. The level of noise exhibited in the bias magnetic field is further confirmed by evaluating the coherence time of a Bose-Einstein condensate characterized by Rabi oscillation. It is concluded that this approach can be applied to other physical systems as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call