Abstract

SummaryEquivalent input current noise and bandwidth are the most relevant parameters qualifying a low‐noise transimpedance amplifier. In the conventional topology consisting of an operational amplifier in a shunt‐shunt configuration, the equivalent input noise decreases as the feedback resistor (RF), which also sets the gain, increases. Unfortunately, as RF increases above a few MΩ, as it is required for obtaining high sensitivity, the bandwidth of the system is set by the parasitic capacitance of RF and reduces as RF increases. In this paper, we propose a new topology that allows overcoming this limitation by employing a large‐bandwidth voltage amplifier together with a proper modified feedback network for compensating the effect of the parasitic capacitance of the feedback resistance. We experimentally demonstrate, on a prototype circuit, that the proposed approach allows to obtain a bandwidth in excess of 100 kHz and an equivalent input noise of about 4 fA/ , corresponding to the current noise of the 1 GΩ resistor that is part of the feedback network. The new approach allows obtaining larger bandwidth with respect to those obtained in previously proposed configurations with comparable background noise. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.