Abstract
The design and the experimental results of some prototypes of SiC X-ray detectors are presented. The devices have been manufactured on a 2’’ 4H-SiC wafer with 115 m thick undoped high purity epitaxial layer, which constitutes the detection’s active volume. Pad and pixel detectors based on Ni-Schottky junctions have been tested. The residual doping of the epi-layer was found to be extremely low, 3.7 x 1013 cm-3, allowing to achieve the highest detection efficiency and the lower specific capacitance of the detectors. At +22°C and in operating bias condition, the reverse current densities of the detector’s Schottky junctions have been measured to be between J=0.3 pA/cm2 and J=4 pA/cm2; these values are more than two orders of magnitude lower than those of state of the art silicon detectors. With such low leakage currents, the equivalent electronic noise of SiC pixel detectors is as low as 0.5 electrons r.m.s at room temperature, which represents a new state of the art in the scenario of semiconductor radiation detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.