Abstract

Single-atom catalysts (SACs), as a novel emerging category in heterogeneous catalysis, have exhibited superb activity and selectivity within the scope of many catalytic reactions, originating from their nature of atomic dispersion. However, they are not appropriate for more complicated reactions that benefit from multi-metal promotion, such as the carbon dioxide reduction reaction (CO2 RR). Atomic pair catalysts can provide a synergistic effect to break the intrinsic activity limit. Herein, inspired by theoretical prediction, a hetero-paired atomic-site catalyst (Ni/Fe-N/O-C) was developed for CO2 RR. Typically, the trace-amount-loaded double-atom-site catalysts exhibited outstanding turnover frequencies (≈460 s-1 ) surpassing reported ones by far. Interestingly, the loaded metal contents of the three M-N/O-C samples were extremely low, and Ni/Fe-N/O-C exhibited greatly improved durability compared with pure Ni-N/O-C or Fe-N/O-C and excellent CO selectivity above 80 % within a broad potential window of -1.4 to -1.7 V (vs. saturated calomel electrode, 99.8 % at -1.5 V). The superb performance of diatomic-site catalysts was attributed to the adjusted local environment and electron structure of the active center, which could decrease the reaction barrier of *COOH formation. This work presents new insights into manipulating electrocatalytic performance for the development of more sophisticated active sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call