Abstract

From the application point of view, high electric field-induced strain with ultra-low hysteresis or hysteresis-free characteristic is highly desired in high-precision displacement actuators. In this work, lead-free Ba(ZrxTi1-x)O3 (BZT) ferroelectrics with x in the range between 0.02 and 0.1 were fabricated by a conventional solid state reaction method. The structural evolution and electrical properties were investigated systematically with an emphasis on electrostrictive effect. As x increases from 0.02 to 0.1, the crystal lattice parameters (a and c axes) increase while the tetragonality (c/a-1) goes down. In addition, the Curie temperature (TC) of BZT decreases gradually, while the temperatures corresponding to tetragonal-to-orthorhombic (T-O) and orthorhombic-to-rhombohedral (O-R) phase transitions increase. Ultra-low hysteresis (<8%) and high electric field-induced strains (>0.15% at 60 kV/cm) are observed in all studied compositions. Most importantly, a high longitudinal electrostrictive coefficient Q33 (0.0453 m4/C2) was also identified in x = 0.1 composition. This work not only reports high electric field-induced strains with ultra-low hysteresis and high Q33 in lead-free BZT ferroelectrics, but also indicates a potential application for BZT ceramics in high-precision displacement actuators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.