Abstract

The limited lifespan of batteries is a challenge in the application of implantable electronic devices. Existing wireless power technologies such as ultrasound, near-infrared light and magnetic fields cannot charge devices implanted in deep tissues, resulting in energy attenuation through tissues and thermal generation. Herein, an ultra-low frequency magnetic energy focusing (ULFMEF) methodology was developed for the highly effective wireless powering of deep-tissue implantable devices. A portable transmitter was used to output the low-frequency magnetic field (<50Hz), which remotely drives the synchronous rotation of a magnetic core integrated within the pellet-like implantable device, generating an internal rotating magnetic field to induce wireless electricity on the coupled coils of the device. The ULFMEF can achieve energy transfer across thick tissues (up to 20cm) with excellent transferred power (4-15mW) and non-heat effects in tissues, which is remarkably superior to existing wireless powering technologies. The ULFMEF is demonstrated to wirelessly power implantable micro-LED devices for optogenetic neuromodulation, and wirelessly charged an implantable battery for programmable electrical stimulation on the sciatic nerve. It also bypassed thick and tough protective shells to power the implanted devices. The ULFMEF thus offers a highly advanced methodology for the generation of wireless powered biodevices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.