Abstract
Pyrolysis of mixed titanium and silicon metal halides produces a commercial glass (7.4% TiO2) with ultra-low thermal expansion that is essentially zero over the temperature range of 0 to 300°C. A colloidal particulate gel process involving potassium silicate, titania sol and formamide gel reagent was found to produce glass compositions with similar low expansion behavior. Due to the strongly basic nature of the precursor solutions, special titania sols had to be prepared that were stable in these alkali silicate solutions. The preferred TiO2 sols were those containing quaternary ammonium stabilizing counter-ions. These sols served not only as the source of homogeneously distributed titania, but they may also serve as nucleating species that contribute to particle growth and pore size control of the gel network. The large pore (∼0.3 µm) TiO2/SiO2 gel structures were easily dealkalized, dried and sintered to uncracked glass shapes. Plates up to 9.5 cm×6.6 cm× 0.5 cm thick and some intricate cast shapes were produced and their glass properties evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.