Abstract
AbstractIn this paper, the high value‐added (ultra‐low degree of polymerization [ULDP]) polyvinyl alcohol (PVA) product was successfully prepared by oxidative chain scission method with sodium hypochlorite as an oxidant. When the molar ratio of PVA to NaClO is not less than 1:1.8, the reaction is stirred for several hours (≥2 h) at a temperature not exceeding 50°C. After precipitation and washing in methanol, PVA with polymerization degree of 38–150 can be obtained after drying. The infrared spectrum (IR) and nuclear magnetic hydrogen spectrum (1H‐NMR) test proved that the product obtained by this method is indeed PVA. The results of 1H‐NMR also showed that the chain broken has no selectivity and the stereoregularity of hydroxyl group did not change significantly. Through radical quenching experiment and electron paramagnetic resonance (EPR) analysis, it is proved that OCl− is the main active oxide, ·Cl makes the oxidative chain scission process can be realized quickly, and ·OH is an indispensable factor for obtaining ULDP PVA. Under the combined action of these three, high value‐added PVA with ULDP was successfully prepared. Additionally, the sodium hypochlorite oxidized the ·OH captured by 5,5‐dimethyl‐1‐pyrroline‐n‐oxide (DMPO‐OH) to 2‐hydroxy‐5,s‐dimethyl‐1‐pyrroline‐N‐oxide (HDMPO‐OH) in an alkaline environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.