Abstract
A record-long 10,118-km fiber transmission with physical layer encryption is demonstrated utilizing a Y-00 cipher based on signal masking by quantum (shot) noise. The Y-00 cipher enables symmetric-key data encryption to ensure the security of the physical layer of optical communications. Irreducible secrecy without significant negative impact on transmission performance is achieved by the synergistic effect of combining seed-key-based high-order modulation and truly random shot noise inevitable in optical detection. This paper reports a comprehensive study of applying a phase-shift-keying (PSK) Y-00 cipher for ultra-long haul fiber transmission. Theoretical analysis shows that security-enhanced transmission over transoceanic-distance (>10,000 km) fiber is feasible when the quadrature PSK data signal is encrypted by converting to a PSK signal with 218 levels. Subsequently, 10,118-km standard single-mode fiber transmission of 48-Gbit/s line-rate dual-polarization PSK Y-00 cipher with 218 levels is experimentally demonstrated. An adequate signal quality above the Q-factor threshold of soft decision forward error correction is achieved together with sufficient signal masking by shot noise, yielding balanced transmission performance and high security in an ultra-long-haul PSK Y-00 cipher transmission system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.