Abstract

Ultra-long Gamma-Ray Bursts (ulGRBs) are Gamma-Ray Bursts (GRBs) with an unusually long emission in X and gamma rays, reaching durations of thousands of seconds. They could form a specific class of high-energy transient events, whose origin is still under discussion. The current sample of known ulGRBs consists of a few tens of events which have been detected so far by the Burst Alert Telescope (BAT) aboard the Neil Gehrels Swift Observatory and some other instruments. The SVOM mission which is scheduled to begin operations after 2021 could help to detect and observe more ulGRBs thanks to its soft gamma-ray telescope ECLAIRs. After an introduction on ulGRBs and the SVOM mission, we present the results of our simulations on the capabilities of ECLAIRs to detect ulGRBs. First we use the sample of ulGRBs detected by Swift/BAT and simulate these events through a model of the instrument and the prototype trigger software that will be implemented onboard ECLAIRs. Then we present a study of the ECLAIRs capabilities to detect a synthetic population of ulGRBs built by transporting the ulGRBs detected by Swift/BAT to higher redshifts. Finally we give an estimate of the ulGRB rate expected to be detected by ECLAIRs and show that ECLAIRs can detect at least as much ulGRBs as BAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.