Abstract

Ultra-light carboxylic functionalized multi-walled carbon nanotubes (CNTs-COOH) and Ti3C2 MXene hybrids modified sodium alginate (CNTs/Ti3C2-SA) based composite foams were prepared through ice-templated freeze-drying method. The microstructure of the synthesized CNTs/Ti3C2 hybrids and CNTs/Ti3C2-SA foams is characterized by the presence of CNTs inserted between MXene layers which prevents their restacking. The resultant CNTs/Ti3C2 hybrids exhibit a unique sandwich-like hierarchical structure. Scanning electron microscopy (SEM) images show that the CNTs/Ti3C2-SA foam exhibits a heterogeneous anisotropic microstructure and CNTs/Ti3C2 hybrids are homogeneously dispersed in the skeleton of the porous foam. In case that the content of the hybrids amounts 40 mg/cm3, the CNTs/Ti3C2-SA foam possesses excellent electromagnetic (EM) absorption performance with a minimum reflection coefficient (RCmin) as low as -40.0 dB. In case of a sample thickness of 3.95 mm, the RCmin reaches -24.4 dB and the effective absorption bandwidth covers the whole X band from 8.2 to 12.4 GHz. A control test shows that, with the same absorbent content, the CNTs/Ti3C2-SA foam exhibits a far better EM performance than that of CNT-free Ti3C2-SA foam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.