Abstract

Relativistic vortex laser has drawn increasing attention in the laser-plasma community owing to its potential applications in various domains, e.g., generation of energetic charged particles with orbital angular momentum (OAM), high OAM X/γ-ray emission, high harmonics generation, and strong axial magnetic-field production. However, the generation of such relativistic vortex laser is still a challenge to the current laser technology. Using micro-structure targets named axial line-focused spiral zone plate (ALFSZP), we propose a novel scheme for ultra-intense vortex laser generation. In the scheme, a relativistic Gaussian laser pulse irradiates an ALFSZP, and diffracts as it passes through the ALFSZP. Due to the focusing and radial Hilbert transform capabilities of the ALFSZP, the seed laser is converted efficiently to a vortex one which is then well focused in a tunable focal volume. Three-dimensional particle-in-cell simulations indicate that using a seed laser pulse with intensity of 1.3 × 1020 W/cm2, the vortex laser intensity achieved is as high as 1.3 × 1021 W/cm2 with the averaged angular momentum per photon up to 0.73ℏ, promising diverse applications in various fields aforementioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.